Single-crossover recombination and ancestral recombination trees.
نویسندگان
چکیده
We consider the Wright-Fisher model for a population of [Formula: see text] individuals, each identified with a sequence of a finite number of sites, and single-crossover recombination between them. We trace back the ancestry of single individuals from the present population. In the [Formula: see text] limit without rescaling of parameters or time, this ancestral process is described by a random tree, whose branching events correspond to the splitting of the sequence due to recombination. With the help of a decomposition of the trees into subtrees, we calculate the probabilities of the topologies of the ancestral trees. At the same time, these probabilities lead to a semi-explicit solution of the deterministic single-crossover equation. The latter is a discrete-time dynamical system that emerges from the Wright-Fisher model via a law of large numbers and has been waiting for a solution for many decades.
منابع مشابه
Constructing Minimal Ancestral Recombination Graphs
By viewing the ancestral recombination graph as defining a sequence of trees, we show how possible evolutionary histories consistent with given data can be constructed using the minimum number of recombination events. In contrast to previously known methods, which yield only estimated lower bounds, our method of detecting recombination always gives the minimum number of recombination events if ...
متن کاملThe effect of recombination on the reconstruction of ancestral sequences.
While a variety of methods exist to reconstruct ancestral sequences, all of them assume that a single phylogeny underlies all the positions in the alignment and therefore that recombination has not taken place. Using computer simulations we show that recombination can severely bias ancestral sequence reconstruction (ASR), and quantify this effect. If recombination is ignored, the ancestral sequ...
متن کاملOptimal, Efficient Reconstruction of Root-Unknown Phylogenetic Networks with Constrained and Structured Recombination1
Phylogenetic networks are models of sequence evolution that go beyond trees, allowing biological operations that are not consistent with tree-like evolution. One of the most important of these biological operations is (single-crossover) recombination between two sequences. is to find a phylogenetic network that derives an input set of sequences, minimizing the number of recombinations used. No ...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملRecombination and phylogeny: effects and detection
The role of phylogeny in guiding comparative studies is rapidly growing in the post genomic era. Most phylogeny reconstruction methods though, assume a single tree underlying a given alignment of sequences. However, when events such as recombination occur, different regions in the alignment may have different underlying trees. In this paper, we demonstrate via simulations, the effect of recombi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 68 6 شماره
صفحات -
تاریخ انتشار 2014